AN EXTENSION OF THE GEOMETRICAL FORM OF THE HAHN-BANACH THEOREM

KAZUO ANZAI

The geometrical form of the Hahn-Banach theorem is well known (See for example (1)). The purpose of this note is to generalize this result to convergence vector space. More precisely, we shall prove the following

Theorem. Let (E, τ) be a Hausdorff convergence vector space, let M be an affine subspace in E, and let K be a non-empty convex open subset of E, not intersecting M. There exists a closed hyperplane in E, containing M and not intersecting K.

To prove the Theorem we recall several results.

Lemma 1. (Wloka (4)). Let M be a vector subspace of a convergence vector space (E, τ) . Then M is closed if and only if $(E/M, \tau')$ is Hausdorff, where τ' is the finest convergence structure on E/M which makes the canonical mapping of E onto E/M continuous.

Lemma 2. (Courant (2)). Every Hausdorff convergence vector space of finite dimension n is isomorphic to K^n with the usual topology.

Then we have the following

Lemma 3. Let (E, τ) be a Hausdorff convergence vector space over R of dimension at least 2. If K is an open, convex subset of E not containing 0, there exists a one-dimensional subspace of E not intersecting K.

Proof. Let M be any fixed two dimensional subspace of E. If $M \cap K = \phi$, the result is immediate. Therefore we assume that $K_1 = M \cap K$ is non-empty. We see that K_1 is an open convex subset of M not containing 0. Because, for every $x \in K_1$, there is a $V \in \tau_0$ such that $(x+V) \cap M \subset (K \cap M)$. Therefore K_1 is open.

By Lemma 2 we can identify M with R^2 (the Euclidean plane). Project K_1 onto a subset of the unit circle C of M by the mapping

$$f: (x, y) \longrightarrow (\frac{x}{r}, \frac{y}{r}), \qquad r = (x^2 + y^2)^{\frac{1}{2}}.$$

Since K_1 , being convex, is connected, $f(K_1)$ is connected, for f is continuous on K_1 . Moreover $f(K_1)$ is an open subset of C. Hence $f(K_1)$ is an open arc on C which subtends an angle $\leqslant \pi$ at 0. Otherwise, there would exists a straight line in M passing through 0 and not intersecting K. This completes the proof.

To prove our Theorem we can assume that M is a subspace of E. Because, after a translation, if necessary, we can have $0 \in M$. Consider the family $\mathfrak M$ of all closed real subspaces of E that contain M and do not intersect K. Since K is open, \overline{M} is the closed subspace such that $M \cap K = \phi$. Hence \mathfrak{M} is non-empty. Order \mathfrak{M} by inclusion \supset . If we have a totally ordered subfamily $\{M_{\alpha}\}$ of \mathfrak{M} , the closure of $\cup {}^{\alpha}M_{\alpha}$ is clearly its least upper bound. Thus Zorn's lemma applies and we may conclude that $\{M_{\alpha}\}$ possesses maximal element H_0 . If E_0 denotes the real underlying space of E, the quotient space E_0/H_0 is Hausdorff by Lemma 1, for H_0 is closed. Because of $K=\phi$, E_0/H_0 has dimension ≥ 1 . Suppose that E_0/H_0 is of dimension ≥ 2 . Since the natural mapping Φ of E_0 onto E_0/H_0 is linear open, $G=\Phi(K)$ is a convex, open subset of E_0/H_0 , not containing 0, since H_0 does not intersect K. Hence by Lemma 3, there exists a one-dimensional subspace N of E_0/H_0 not intersecting G. This implies that $H=\Phi^{-1}(N)$ is a closed subspace of E_0 containing H_0 properly and not intersecting K. This contradicts the maximality of H_0 in \mathfrak{M} . Hence E_0/H_0 has dimension 1, and H_0 is a closed, real hyperplane containing M and not intersecting K. This completes the proof when E is a convergence vector space over R.

E is a convergence vector space over C, then M=iM (assuming $0 \in M$), since M is a subspace of E. Consequently $H_1=H_0\cap iH_0$, which is a closed hyperplane in E not intersecting K, contains M, and the proof is complete.

Corollary. If E is a Hausdorff convergence vector space, there exists a continuous linear form f
in 0 on E if and only if E cotains a non-empty convex, open subset K
in E.

Proof. If f = 0 is a continuous linear form on E, the subset $K = \{x : | f(x) | \le 1\}$ is = E, convex, and open. Conversely, if the convex set $K \subset E$ is open and $x_0 \in K$, x_0 is a closed hyperplane H (not intersecting K) by Theorem. Since E/H is a one-dimensional subspace, it follows from Lemma 2 that there exists a non-zero continuous linear form of E. This completes the proof.

REFERNCES

- 1. N. Bourbaki, Espaces vectoriels topologiques, Paris 1953.
- S. Courant, Beiträge zur Theorie der limitierten Vektorräume, Comment. Math. Helv. 44 (1969) 249-268.
- 3. H.R. Fischer, Limesräume, Math. Ann. 137 (1959) 269-303.
- J. Wloka, Limesräume und Distributionen, Math. Ann. 152 (1963) 351–409.

 K_1 . Moreover $f(K_1)$ is an open subset of C. Hence $f(K_1)$ is an open arc on C which subtends an angle \leq_R at 0. Otherwise, there would exists a straight line in M passing through 0 and not intersecting K. This completes the proof

To prove our Theorem we can assume that M is a subspace of E. Because, after a translation, if necessary, we can have $0 \in M$. Consider the family \mathfrak{M} of all closed real subspaces of E that contain M and do not intersect K. Since K is open, \overline{M} is the closed subspace such that $M \cap K = \phi$. Hence \mathfrak{M} is non-empty. Order \mathfrak{M} by inclusion \mathfrak{M} . If we have a totally ordered subfamily $\{M_*\}$ of \mathfrak{M} , the closure of \mathbb{C}^*M_* is clearly its least upper bound. Thus Zorn's lemma applies and we may conclude that $\{M_*\}$ possesses maximal element H_* . If E_* denotes the real underlying space of E, the quotient space E_0/H_* is Hausdorff by Lemma 1, for H_* is closed. Because of $K = \phi$, E_0/H_* has dimension ≥ 1 . Suppose that E_0/H_* is dimension ≥ 2 . Since the natural mapping Φ of E_* onto E_0/H_* is linear open, of dimension ≥ 2 . Since the natural mapping Φ of E_* onto E_0/H_* is linear open, intersect K. Hence by Lemma 3, there exists a one-dimensional subspace K does not E_0/H_* not intersecting G. This implies that $H = \Phi^{-1}(N)$ is a closed subspace of E containing E properly and not intersecting E. This contradicts the maximality containing E and not intersecting E. This completes the proof when E is a converse weater space over E.

E is a convergence vector space over C, then M-iM (assuming $0 \in M$), since M is a subspace of E. Consequently $H_1 - H_0 \cap iH_0$, which is a closed hyperplane in E and intersecting K, contains M, and the proof is complete.

Corollary. If E is a Hausdorff convergence vector space, there exists a continuous linear form $f \succeq 0$ on E if and only if E colains a non-empty convex, open subset $K \bowtie E$

Proof. If f = 0 is a continuous linear form on E, the subset $K = \{x : | f(x) | x \le 1\}$ is f = 0. Conversely, if the convex set f = 0 is open and f = 0 and f = 0 is a closed hyperplane f = 0 (not intersecting f = 0) by Theorem. Since f = 0 is a one-dimensional subspace, it follows from Lemma 2 that there exists a non-zero continuous linear form of f = 0. This completes the proof.

高松短期大学研究紀要

第 5 号

昭和50年3月1日印刷 昭和50年3月10日発行

> 編集発行 高 松 短 期 大 学 〒761-01 高松市春日町 960

> 印刷新日本印刷株式会社高松市木太町 2158