AN EXTENSION OF THE
GEOMETRICAL FORM OF THE HAHN-
BANACH THEOREM
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The geometrical form of the Hahn-Banach theorem is well known (See for ex-
ample [(1]). The purpose of this note is to generalize this result to convergence
vector space. More precisely, we shall prove the following

Theorem. Let (E, -) be a Hausdor ff convergence vector space, let M be an
affine subspace in E, and let K be a non-empty convex open subset of E, not infer-
secting M. There exists a closed hyperplane in E, containing M and not intersecling
FE

All vector spaces in this note are defined on the field K of real or complex
numbers. We shall make use of the definitions and the notions of [3). However
we will recall some basic definitions for easy reference. A convergence structure
on a set E is a mapping - of E into the power set of the set of all filters on E
satisfying the following conditions for each x=E: (1) The filter x with base
{{x}}is in zx; (2) If G is a filter on E containing a filter Fc&cx, then Grx;
(3) If %, G=cx, then FNGe=cx. It is said to be Hausdorff if txMzy>¢ implies
x=y. An ordered pair (E, ) of a vector space E and a covergence structure ¢
on E is called a convergence vector space if the mapping (x, y) —> x+y of EXE
into £ and the mapping (A, ) —> Ax of KxE into E are continuous with res-
pect to r and the usual topology on K. It is easy to see that if (E, ) is a con-
vergence vector space, then A-z0C <0 for every A=K and V-x=:0 for every x€E,
where V¥V denotes the neighborhood filter of 0= K for the usual topology on K,

To prove the Theorem we recall several results.

Lemma 1. (Wloka (4)). Let M be a vector subspace of a convergence vector
space (E, 7). Then M is closed if and only if (E/M, ') is Hausdorff, where 7'
is the finest comvergence structure on E/M which makes the canonical mapping of E
onto E/M continuous.

Lemma 2. (Courant [2)). Ewvery Hausdor ff convergence vector space of fi-

nite dimension n is isomor phic to K" with the usual topology.

Then we have the following
Lemma 3. Le¢t (E, 7) be a Hausdor ff convergence vector space over R of di-
mension at least 2. If K is an open, convex subset of E not containing 0, there

exists a ome-dimensional subspace of E wot iniersecting K.



Proof. Let M be any fixed two dimensional subspace of E. If MNK=4¢,
the result is immediate. Therefore we assume that Ki=MNK is non-empty. We
see that K. is an open convex subset of M not containing 0. Because, for every
x=K,, there is a V=<0 such that (x+ V)N Mc (KNM). Therefore K: is open.

By Lemma 2 we can identify M with R?® (the Euclidean plane). Project K;
onto a subset of the unit circle C of M by the mapping

PGy ey (%, %), r=(t+y) t,
Since Ki, being convex, is connected, f(K,) is connected, for f is continuous on
K.. Moreover f(K:) is an open subset of C. Hence f(K:) is an open arc on C
which subtends an angle <Cz at 0. Otherwise, there would exists a straight line in
M passing through 0 and not intersecting K. This completes the proof.

To prove our Theorem we can assume that M is a subspace of E. Because,
after a translation, if necessary, we can have Q=M. Consider the family 0 of
all closed real subspaces of E that contain M and do not intersect K. Since K is
open, M is the closed subspace such that MNK =¢. Hence M is non-empty. Or-
der M by inclusion D. If we have a totally ordered subfamily {M.} of M, the
closure of U®*M, is clearly its least upper bound. Thus Zorn’s lemma applies and
we may conclude that {M.} possesses maximal element Ho. If Eo denotes the real
underlying space of E, the quotient space E,/H, is Hausdorff by Lemma 1, for
H, is closed. Because of K=¢, Eo/Ho has dimension =1. Suppose that Ey/Ho is
of dimension ==2. Since the natural mapping & of Eo onto Eo/H, is linear open,
G=®(K) is a convex, open subset of Eo/Ho, not containing 0, since H, does not
intersect K. Hence by Lemma 3, there exists a one-dimensional subspace N of
Eo/H, not intersecting G. This implies that H=®"'() is a closed subspace of
Eo containing Ho properly and not intersecting K. This contradicts thé maximality
of Ho in M. Hence Eo/Hy has dimension 1, and Ho is a closed, real hyperplane
containing M and not intersecting K. This completes the proof when E is a con-
vergence vector space over R,

E is a convergence vector space over C, then M=iM (assuming 0=M), since
M is a subspace of E. Consequently Hi=HiNiHy, which is a closed hyperplane in
E not intersecting K, contains M, and the proof is complete.

Corollary. If E is a Hausdor ff convergence vector space, there exists a con-
tinuous linear form f<0 on E if and only if E cotains @ non-empty convex, open
subset K=<E.

Proof. If f>=0 is a continuous linear form on E, the subset K= {x: | f(x) |
< 1} is 2 E, convex, and open. Conversely, if the convex set K C E is open
and xo=K, xo is a closed hyperplane H (not intersecting K) by Theorem. Since
E/H is a one-dimensional subspace, it follows from Lemma 2 that there exists a

non-zero continuous linear form of E. This completes the proof.
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